Deep Learning Assisted Adaptive Index Modulation for mmWave Communications With Channel Estimation
نویسندگان
چکیده
The efficiency of link adaptation in wireless communications relies greatly on the accuracy channel knowledge and transmission mode selection. In this paper, a novel deep learning based framework is proposed for orthogonal frequency-division multiplexing (OFDM) systems with compressed-sensing-assisted index modulation, termed as OFDM-CSIM, communicating over millimeter-wave (mmWave) channels. To achieve adaptation, multi-layer sparse Bayesian (SBL) algorithm accurately instantaneously providing required state information. Meanwhile, neural networks (DNN)-assisted adaptive modulation to choose best possible maximize achievable throughput. Simulation results show that SBL enables more accurate estimation than conventional techniques. DNN-based modulator capable achieving higher throughput learning-assisted solution $k$ nearest neighbor ( -NN) algorithm, also classic average signal-to-noise ratio (SNR)-based solutions. Moreover, analysis shows both DNN-assisted better performance their respective counterparts while at significantly lower computational complexity cost.
منابع مشابه
Deep Learning-based Channel Estimation for Beamspace mmWave Massive MIMO Systems
Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave (mmWave) massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a larg...
متن کاملchannel estimation for mimo-ofdm systems
تخمین دقیق مشخصات کانال در سیستم های مخابراتی یک امر مهم محسوب می گردد. این امر به ویژه در کانال های بیسیم با خاصیت فرکانس گزینی و زمان گزینی شدید، چالش بزرگی است. مقالات متعدد پر از روش های مبتکرانه ای برای طراحی و آنالیز الگوریتم های تخمین کانال است که بیشتر آنها از روش های خاصی استفاده می کنند که یا دارای عملکرد خوب با پیچیدگی محاسباتی بالا هستند و یا با عملکرد نه چندان خوب پیچیدگی پایینی...
Adaptive OFDM Index Modulation for Two-Hop Relay-Assisted Networks
In this paper, we propose an adaptive orthogonal frequency-division multiplexing (OFDM) index modulation (IM) scheme for two-hop relay networks. In contrast to the traditional OFDM IM scheme with a deterministic and fixed mapping scheme, in this proposed adaptive OFDM IM scheme, the mapping schemes between a bit stream and indices of active subcarriers for the first and second hops are adaptive...
متن کاملPilot-assisted Adaptive Interpolation Channel Estimation for OFDM Signals
OFDM 移動通信における適応補間フィルタを用いるチャネル推定 高岡 辰輔 安達 文幸 東北大学大学院工学研究科 電気・通信工学専攻 〒980-8579 仙台市青葉区荒巻字青葉 05 E-mail: †[email protected], ‡[email protected] あらまし 同期検波を用いる直交周波数分割多重(OFDM)では,高精度のチャネル推定が必要である.本論文では,補間フ ィルタの係数を適応的に更新する適応補間チャネル推定を提案している.時間多重,周波数多重や分散多重パイロットシン ボル配置を用いるときの,1 次元及び 2 次元適応補間チャネル推定を検討している.2 重(時間および周波数)選択性レイリ ーフェージング環境下での平均ビット誤り率(BER)特性を計算機シミュレーションにより求め,2 次元適応補間チャネル推定 は...
متن کاملDeep Reinforcement Learning for Improving Downlink mmWave Communication Performance
We propose a method to improve the DL SINR for a single cell indoor base station operating in the millimeter wave frequency range using deep reinforcement learning. In this paper, we use the deep-Q reinforcement learning models to arrive at optimal sequences of actions to improve the cellular network SINR value from a starting to a feasible target value. While deep reinforcement learning has be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Vehicular Technology
سال: 2022
ISSN: ['0018-9545', '1939-9359']
DOI: https://doi.org/10.1109/tvt.2022.3181825